Detecting Ca2+ sparks on stationary and varying baselines.

نویسندگان

  • Peter Bankhead
  • C Norman Scholfield
  • Tim M Curtis
  • J Graham McGeown
چکیده

Studies concerning the physiological significance of Ca(2+) sparks often depend on the detection and measurement of large populations of events in noisy microscopy images. Automated detection methods have been developed to quickly and objectively distinguish potential sparks from noise artifacts. However, previously described algorithms are not suited to the reliable detection of sparks in images where the local baseline fluorescence and noise properties can vary significantly, and risk introducing additional bias when applied to such data sets. Here, we describe a new, conceptually straightforward approach to spark detection in linescans that addresses this issue by combining variance stabilization with local baseline subtraction. We also show that in addition to greatly increasing the range of images in which sparks can be automatically detected, the use of a more accurate noise model enables our algorithm to achieve similar detection sensitivities with fewer false positives than previous approaches when applied both to synthetic and experimental data sets. We propose, therefore, that it might be a useful tool for improving the reliability and objectivity of spark analysis in general, and describe how it might be further optimized for specific applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simple numerical model of calcium spark formation and detection in cardiac myocytes.

The elementary events of excitation-contraction coupling in heart muscle are Ca2+ sparks, which arise from one or more ryanodine receptors in the sarcoplasmic reticulum (SR). Here a simple numerical model is constructed to explore Ca2+ spark formation, detection, and interpretation in cardiac myocytes. This model includes Ca2+ release, cytosolic diffusion, resequestration by SR Ca2+-ATPases, an...

متن کامل

Effects of rogue ryanodine receptors on Ca2+ sparks in cardiac myocytes

Ca2+ sparks and Ca2+ quarks, arising from clustered and rogue ryanodine receptors (RyRs), are significant Ca2+ release events from the junctional sarcoplasmic reticulum (JSR). Based on the anomalous subdiffusion of Ca2+ in the cytoplasm, a mathematical model was developed to investigate the effects of rogue RyRs on Ca2+ sparks in cardiac myocytes. Ca2+ quarks and sparks from the stochastic open...

متن کامل

Distinct Effects of Ca2+ Sparks on Cerebral Artery and Airway Smooth Muscle Cell Tone in Mice and Humans

The effects of Ca2+ sparks on cerebral artery smooth muscle cells (CASMCs) and airway smooth muscle cells (ASMCs) tone, as well as the underlying mechanisms, are not clear. In this investigation, we elucidated the underlying mechanisms of the distinct effects of Ca2+ sparks on cerebral artery smooth muscle cells (CASMCs) and airway smooth muscle cells (ASMCs) tone. In CASMCs, owing to the funct...

متن کامل

Large currents generate cardiac Ca2+ sparks.

Previous models of cardiac Ca2+ sparks have assumed that Ca2+ currents through the Ca2+ release units (CRUs) were approximately 1-2 pA, producing sparks with peak fluorescence ratio (F/F(0)) of approximately 2.0 and a full-width at half maximum (FWHM) of approximately 1 microm. Here, we present actual Ca2+ sparks with peak F/F(0) of >6 and a FWHM of approximately 2 microm, and a mathematical mo...

متن کامل

Spatial and temporal aspects of calcium sparks in porcine tracheal smooth muscle cells.

Spontaneous, localized intracellular Ca2+concentration ([Ca2+]i) transients (Ca2+ sparks) in skeletal, cardiac, and smooth muscle cells are thought to represent Ca2+ release through ryanodine-receptor (RyR) channels. In porcine tracheal smooth muscle (TSM) cells, ACh induces propagating [Ca2+]ioscillations that also represent Ca2+ release through RyR channels. We used real-time confocal imaging...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 301 3  شماره 

صفحات  -

تاریخ انتشار 2011